A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

APPLIED MATH, PAPER-II

9	APPLIED MATH, PAPER-II	
TIME A	LLOWED: 3 HOURS MAXIMUM MARKS:	100
NOTE:	 (i) Attempt FIVE question in all by selecting at least TWO questions from SECTION ONE question from SECTION-B and TWO questions from SECTION-C. questions carry EQUAL marks. (ii) Use of Scientific Calculator is allowed. 	
	SECTION – A	
Q.1.	Solve the following equations: (a) $d^2y/dx^2 + 5 dy/dx + 6y = x$ (b) $d^2y/dx^2 + 5 y = e^x$	(10) (10)
Q.2. (a) (b)	Derive Cauchy Rieman partial differential equations. Derive Lapace Equation.	(10) (10)
Q.3. (a) (b)	Solve: $(\partial^2 / \partial x^2 + \partial^2 / \partial x \partial y + \partial^2 / \partial y^2) u = 4 e^{3y}$ u'' + 6u' + 9 = 0; Given that $u(0) = 2$ and $u'(0) = 0$.	(10) (10)
Q.4. (a)	SECTION – B Discuss the following supported by examples: • Tensor, • ∈ _{ijk} ∈ _{lmk} • Scaler Fields for a continuously differentiable function f=f(x,y,z)	(5) (5) (5)
	Can we call a vector as Tensor, discuss. What is difference between a vector and a tensor? What happens if we permute the subscripts of a tensor? Discuss the simplest and efficient method of finding the inverse of a square matrix a _{ij}	(5)
(b)	of order 3x3. Apply any efficient method to compute the inverse of the following matrix A: $\mathbf{A} = \begin{bmatrix} 25 & 2 & 1 \\ 2 & 10 & 1 \end{bmatrix}$	(10) (10)
Q.6. (a)	$\underline{\textbf{SECTION} - \textbf{C}}$ Develop Gauss Siedal iterative Method for solving a linear system of equations A $x = b$,	
(b)	where A is the coefficient matrix. Apply Gauss Siedal iterative Method to solve the following equations: $25X_1 + 2X_2 + X_3 = 69$ $2X_1 + 10X_2 + X_3 = 63$ $X_1 + 2X_2 + X_3 = 43$	(10) (10)
Q.7. (a) (b)	Derive Simpson's Rule for finding out the integral of a function f(x) from limits x=a t n=6 subintervals (i.e. steps). Apply Simpson's Rule for n=6 to evaluate:	0 x=b f (10) (10)
	$\int_{0}^{1} f(x) dx \text{where} f(x) = 1/(1 + x^{2}).$	
Q.8. (a)	Derive Lagrange Interpolation Formula for 4 points:	(10)
(b)	A curve passes through the following points: (0,1),(1,2),(2,5),(3,10). Apply this Lagrange Formula to interpolate the polynomial.	(10)
