A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2009

S.No. R.No.

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE:	(i) Attempt FIVE questions in all by selecting at least THREE questions from SECTION-A and TWO question from SECTION-B . All questions carry EQUA marks.	m L
	(ii) Use of Scientific Calculator is allowed.	
	<u>SECTION – A</u>	
Q.1. (a)	Let the function $f = [-2, 2] \rightarrow R$ be defined by $f(x) = x $. Show that f is continuous at $x = 0$ is not differentiable at $x = 0$. Will there exist a point c in]–1, 1[such that $f'(c) = 0 \text{ or } f(1) - f(-1) = 2 f'(c)$?) but i (10)
(b)	Evaluate $\lim_{x \to o} \frac{(1+x)^{\frac{1}{x}} - e}{x}$	(10)
Q.2. (a)	Find the asymptotes of the curve defined by the equation	
(b)	$(x - y)^{2} (x^{2} + y^{2}) - 10(x - y) x^{2} + 12y^{2} + 2x + y = 0$ Test the convergence of the series	(10)
	$\sum_{n=1}^{\infty} \frac{1}{n^k}, k > 0$	
	How do we call this series?	(10)
Q.3. (a) (b)	Find the area enclosed by the parabola $y^2 + 16x + 6y - 71 = 0$ and the line $4x + y + 7 = 0$ Find the volume of the solid generated by revolving about the y-axis the area of the triangle vertices at (2,1), (6,1) and (4,5).	(<mark>10)</mark> le wit (10)
Q.4. (a)	If $u = \operatorname{are} Sin \frac{\left(x^2 + y^2\right)}{x + y}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.	(10)
(b)	Integrate $F(x, y) = \frac{1}{y^4 + 1}$ over the region $R: o \le x \le 8, \sqrt[3]{x} \le y \le 2$	(10)
Q.5. (a)	Let X be the set of all (bounded or unbounded) sequences of complex numbers. If d: $X \times X$ is defined as	$X \rightarrow H$
	$d(x, y) = \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\left \xi_{j} - \eta_{j}\right }{1 + \left \xi_{j} - \eta_{j}\right }$	
	where $x = (\xi_j)$ and $y = (\eta_j)$, then show that d is a metric on X.	(10)
(b)	Prove that the mapping:	
	$T: (X, d_x) \to (Y, d_y)$ is continuous at a point $x_o \in X \iff x_n \to x_o$ implies $Tx_n \to Tx_o$.	(10)

SECTION – B

Q.6. (a) If $Z = \frac{(1+i) + (3+2i)t}{1+it}$, then show that the locus of Z is a circle. Also calculate the minimum (10) (10)and maximum distance of Z from the origin. Find the complex number Z satisfying the equation (b) $Z^{2} + (2i - 3) Z + (5 - i) = 0$ (10)**Q.7.** (a) Show that the function u(x,y) = 4xy - 3x + 2is harmonic. Construct the corresponding analytic function (10)f(z) = u(x,y) + iv(x,y)Find the Fourier Series of the function (b) $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi < x < 2\pi \end{cases}$ period 2π (10)Evaluate the following integral by using Canchy Integral Formula: **Q.8.** (a) $\int \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the circle $|z| = \frac{3}{2}$ (10)Prove that (b) $\int_{-\infty}^{2\pi} \frac{d\theta}{1-2p\cos\theta-p^2} = \frac{2\pi}{1-p^2}$ where o .(10)******